Rumble Royale: Can the U.S. Grid Work With 100% Renewables?

Four Days in 2055: Dynamic heat and power supply in the mid-century wind, water and sunlight-fuelled Continental U.S. simulated by Stanford’s Mark Jacobson. Credit: ASU/PNAS

A battle royale between competing visions for the future of energy blew open today on the pages of a venerable science journal. The conflict pits 21 climate and power system experts against Stanford University civil and environmental engineer Mark Jacobson and his vision of a world fuelled 100 percent by renewable solar, wind, and hydroelectric energy. The criticism of his “wind, water and sun” solution and an unapologetic rebuttal from Jacobson and three Stanford colleagues appear today in the Proceedings of the National Academy of Sciences (PNAS).

The critics enumerate what they view as invalid modeling tools, modeling errors, and “implausible and inadequately supported assumptions” in a projection of the mid-century U.S. energy supply that Jacobson and his coauthors published in PNAS in 2015. “The scenarios of [that paper] can, at best, be described as a poorly executed exploration of an interesting hypothesis,” write the experts, led by Christopher Clack, CEO of power grid modeling firm Vibrant Clean Energy.

Clack says their primary goal is accurate science, the better to equip policymakers for critical decisions: “We’re trying to be scientific about the process and honest about how difficult it could be to move forward.”

The text and statements by Clack’s coauthors question Jacobson’s evaluation of competing energy technologies, and specifically his rejection of two non-renewable energy options: fossil fuel power plants equipped to capture their own carbon dioxide pollution and nuclear reactors.

Jacobson calls Clack’s attack, “the most egregious case of scientific fraud I have encountered in the literature to date.”

In fact, while both sides claim to be objectively weighing the energy options, the arguments and backgrounds of the protagonists belie well-informed affinities for various energy sources (and informed biases against others). As sociologists of science would say, their choice of data and their reading of it reflects hunches, values, and priorities.

Consider Clack’s coauthor Ken Caldeira, a climate scientist at the Carnegie Institution for Science. Caldeira’s press release broadcasting their critique argues that removing carbon dioxide from the U.S. power supply is a massive job demanding the biggest tool box possible: “When you call a plumber to fix a leak, you want her to arrive with a full toolbox and not leave most of her tools at home,” says Caldeira.

The same document then abandons this technology-agnostic tone to call out nuclear energy and carbon capture as technologies that “solving the climate problem will depend on.” And Caldeira has appealed for deploying a new generation of nuclear reactors which he and other nuclear boosters such as former NASA scientist Jim Hansen say are needed because renewables “cannot scale up fast enough.”

They could be right. Then again, expert sources they cite, such as the International Energy Agency, have consistently underestimated renewable energy growth. And identical scale-up critiques have also been well argued against nuclear energy and carbon capture and storage (CCS).

Jacobson makes some powerful arguments for walking away from those technologies in his PNAS papers. Nuclear liabilities cited by Jacobson include the threat of future Fukushima-like disasters, nuclear weapons proliferation facilitated by large-scale uranium enrichment, and the financial risks such as those that recently bankrupted Westinghouse. And, as he notes in his rebuttal, the International Panel on Climate Change has determined there is “robust evidence” and “high agreement” among experts validating these nuclear risks.

Jacobson’s rejection of CCS technology, meanwhile, may provide deeper insight on what makes him a magnet for academic attacks.

The main thing that soured Jacobson on CCS was his own pioneering work on the climate change impacts of black carbon, or soot. Fossil fuel plants that capture most of their CO2 still release soot that’s both a public health menace and an agent of climate change. In a 2001 paper in Nature on simulations of soot particles in the atmosphere, he controversially argued that soot in the air and on blackened snow and ice fields absorbs enough heat to make its climate impact second only to CO2. Sixteen years on, that view now enjoys strong support from the science community.

Jacobson subsequently turned his science on black carbon into political activism, helping to convince California regulators to deny low-carbon incentives to so-called “clean diesel” technology. A decade later that tech is in disarray—sullied by scandals over fraudulent tailpipe cleanup claims. European automakers long reliant on diesel technology are now abandoning it in favor of hybrids, as IEEE Spectrum reported in April.

His style, however, has not necessarily made him popular among climate scientists. Drew Shindell, a climate modeler at Duke University, describes Jacobson as a brilliant scientist with an unusual go-it-alone style that alienates some researchers.

Whereas most climate models are honed by large teams, composed of hundreds of scientists, Jacobson single-handedly constructed the GATOR-GCMM climate model that underpins his work—including the 2001 Nature and 2015 PNAS reports. Shindell says other climate models are also shared more freely and subject to much more independent validation than Jacobson’s. So when he claims that “his model is more complex and therefore better,” says Shindell, it “rubs people the wrong way.”

To Shindell, however, Jacobson’s outspokenness and solo style do not invalidate his work. In fact, he argues that raising important questions is Jacobson’s greatest contribution: “His work does prompt people to really look closely. That’s also a service to the community.”

Could something similar be playing out now in PNAS? Power experts can bristle at outsiders who offer novel approaches to their problems. In 2004 Spectrum profiled mathematical modelers—a power engineer and a pair of plasma physicists—who were drawing heavy fire for the unorthodox prediction that big blackouts are inevitable. That trio (Ian Dobson, Benjamin Carreras, and David Newman) endured years of derision and saw their research funding pulled. They ultimately triumphed by all but predicting the Southwest blackout of 2011, a story I documented for Discover magazine last year.

Jacobson and his PNAS coauthors similarly crafted their own unorthodox energy model—LOADMATCH—which sets a bold vision. While their critics mostly model power grids, Jacobson’s team used LOADMATCH to map out a 100-percent-renewable route to meeting all major energy needs in the Continental United States. The model replaces fossil fuels for heating and transportation with renewably-generated hydrogen and electricity, thereby tackling nearly all greenhouse emissions from fossil fuels rather than just the 35 percent from power plants.

Mark Jacobson. Photo: L.A. Cicero

The weakest point in Jacobson’s 2015 paper identified by his critics is a heavy reliance on hydropower plants, which serve as his simulated power grid’s backstop energy supply during long periods of weak sun and becalmed winds. This jumps out in the graph [above], which simulates total continental U.S. heat and power generation over four days in January 2055. Hydro turbines ramp up heavily each day after the sun sets, delivering as much as 1,300 gigawatts at their peak—a level that implies a 15-fold expansion in hydropower generating capacity.

Jacobson says the LOADMATCH code adds turbines to existing hydropower dams as required to prevent power outages. The reservoirs are untouched, and thus store the same amount of energy. But that energy is concentrated into those hours of the year when no other power source is available.

However, no such expansion is documented in the 2015 paper. Critic-in-chief Christopher Clack argues that it is a modeling error because, according his analysis, adding the required turbines at existing dams is not physically possible. And even if it were, he says, discharging the hydropower as described would impose unacceptable impacts on aquatic ecosystems and downstream water users. Invalidating that option, says Clack, means Jacobson’s scheme will cause blackouts: “The whole system breaks down.”

Jacobson admits the 2015 paper was “vague” on the hydropower upgrade but stands by its technical and economic viability. The environmental impacts, he says, reflect a cost that policymakers pursuing his roadmap would need to consider. All clean energy solutions will require tradeoffs, says Jacobson, noting that the low-carbon grid projection that made Clack’s reputation, a 2016 report in Nature Climate Change, calls for a much larger build-out of unpopular powerlines.

Jacobson also has alternative sources of backup power, such as adding turbines to more rapidly convert stored heat from solar thermal power plants into electricity. “We could increase [their] discharge rate by a factor of 3.5 to obtain the same maximum discharge rate of hydro, without increasing the [solar thermal plants’] mirror sizes or storage,” he says.

If you’re wondering where battery storage figures in all of this, it is yet another option—though one that both Jacobson and Clack deemed unnecessarily costly in their respective studies. Clack’s 2016 projections relied mostly on flexible natural gas power plants rather than dams or batteries to handle residual power demand—delivering a 78 percent reduction of power sector carbon emissions from 1990 levels by 2030 [see map below].

What is certain, from the darkening findings of climate science, is that climate change calls for a bold remake of the global energy system of the sort that both Clack and Jacobson have championed. Their respective visions certainly appear to have more in common than ever as the Trump Administration seeks to turn back the clock on grid engineering.

The U.S. power sector is bracing for the release of a power grid study ordered by President Trump on whether renewable energy installations degrade grid reliability by undermining continuously operated “baseload” nuclear and coal power plants. U.S. Energy Secretary Rick Perry’s memo commissioning the study states as fact that “baseload power is necessary to a well-functioning electric grid.”

Last week, the Rocky Mountain Institute’s Mark Dyson and Amory Lovins called out that “curious claim,” which they say, “has been thoroughly disproven by a diverse community of utilities, system operators, economists, and other experts that moved on from this topic years ago.” What the grid needs, they write, is flexibility, not baseload power plants.

The power industry is already moving in that direction. For example, flexibility was California utility PG&E’s central argument last year when it announced plans to shut down the Diablo Canyon nuclear plant when its reactor licenses expire in 2024 and 2025. The baseload plant was ill-suited, PG&E said, to help them manage the increasingly dynamic power flowing on California’s grid.

Dyson and Lovins’ prescription for the power grid community, meanwhile, is unity. As they titled last week’s post: “The grid needs a symphony, not a shouting match.”

Chris Clack’s 2016 U.S. power sector simulation slashes CO2 emissions 78% using a DC supergrid and gas-fired power to balance renewable energy. Source: Nature Climate Change

This post was created for Energywise, IEEE Spectrum’s blog about the future of energy, climate, and the smart grid

Visualizing Donald Trump’s ‘Who knew?!’ Climate Policy Moment

U.S. President Donald Trump called health insurance an “unbelievably complex subject” when Congress was debating health care in February. “Nobody knew health care could be so complicated,” said Trump as Republicans in Congress struggled to find consensus on how to repeal and replace the Affordable Care Act. Given developments in Washington, D.C., over the past week, he could soon be issuing similar tweets about unimagined intricacies in energy policy—intricacies with critical implications for technology developers.

Last week’s main affair in Washington, of course, was Trump’s firing of FBI director James Comey, and the ensuing ‘political firestorm’. But two big energy issues were also playing out, exposing policy rifts among Republicans—cracks that that could ultimately shift the course of U.S. and global policy. Continue reading

Will Earth’s Climate Get More Sensitive to CO2? Only Better Satellites Can Say

President Trump, his top officials, and Republican leaders in Congress propose to dial back action on climate change, arguing that the scientific consensus on human induced-climate change is unconvincing. That makes resolving scientific uncertainties all the more important. A mathematical analysis published today in the journal Nature Climate Change could explain one of the hottest disputes in climate science: just how sensitive Earth’s climate is to rising levels of CO2.

The metric targeted by University of Washington climatologist Kyle Armour in today’s report—equilibrium climate sensitivity—is the warming at Earth’s surface caused by a doubling of atmospheric CO2. A doubling to 560 parts per million since the Industrial Revolution could occur by mid-century if global economies adopt the Trump Administration’s animosity towards climate action and fossil fuel consumption continues unabated.

Armour’s analysis affirms the range of possible climate sensitivity provided by climate models and the IPCC, which some recent studies argue is too high. His analysis also highlights a need for better satellite equipment to narrow the range—including missions that the Trump Administration placed on the chopping block last month. Continue reading

Commentary: Photo Ops with Coal Miners Offer No Substitute for Fact-based Climate Policy

Harry Fain, coal loader. Inland Steel Company, Floyd County, KY. 1946. Photo: Russell Lee

President Donald Trump surrounded himself with coal miners at the EPA yesterday as he signed an executive order calling for a clean sweep of all federal policies hindering development of fossil fuel production in the United States. The order’s centerpiece is an instruction to federal agencies to cease defending EPA’s Clean Power Plan and thus, according to Trump’s rhetoric, revive coal-fired power generation and the miners who fuel it.

The electric power sector, however, responded with polite dismissal.

What separates President Trump and some of his top officials from power engineers and utilities? The latter operate in a world governed by science and other measurable forces. Unlike President Trump, scientists, engineers, and executives suffer reputational and financial losses when they invent new forms of logic that are unsupported by evidence. And a world of fallacies underlies the President and his administration’s rejection of climate action. Continue reading

Micro-Satellite Tracks Carbon Polluters From Space

CLAIRE.PetitSaut.MethaneConcentration

Simulated satellite image of methane plume from French Guyana’s Petit Saut hydroelectric power plant. Image: GHGSat

Attention greenhouse gas emitters: There’s a new eye in the sky that will soon be photographing your carbon footprint and selling the images to any and all. It’s a micro-satellite dubbed “Claire” (clear, bright, and clean in French) by its Montreal-based developer, GHGSat.

This microwave-oven-sized pollution paparazzo rocketed to a 512-kilometer-high orbit in mid-June care of the Indian Space Agency, with a mission to remotely measure the plumes of carbon dioxide and methane wafting up from myriad sources on Earth’s surface. Claire’s targets include power plants, natural gas fracking fields, rice paddies, and much more—just about any emissions source that someone with a checkbook (corporations, regulators, activists) wants tracked, according to GHGSat president Stéphane Germain. Continue reading

How the Paris Climate Deal Happened and Why It Matters

One month after the terror attacks that traumatized Paris, the city has produced a climate agreement that is being hailed as a massive expression of hope. On Monday the U.K. Guardian dubbed the Paris Agreement, “the world’s greatest diplomatic success.” Distant observers may be tempted to discount such effusive language as hyperbole, yet there are reasons to be optimistic that last weekend’s climate deal finally sets the world on course towards decisive mutual action against global climate change.

The birthing process clearly sets Paris apart from earlier efforts at global climate action, such as the Kyoto Protocol crafted in 1997. Only last-minute intervention by then U.S. Vice President Al Gore clinched a deal at Kyoto Continue reading

Paris Climate Talks Facing Growing Carbon Emissions and Credibility Gaps

Credit: Peter Fairley

EN GARDE! Paris treaty pledges are still too rich, and contain some iffy ingredients

Three weeks before the start of the Paris climate talks, negotiators working to craft an international agreement to curb rising global greenhouse gas emissions are staring into a wide gulf between what countries are willing to do and what they need to do. Most countries have stepped up with pledges to meaningfully cut carbon emissions or to at least slow the growth of emission totals between 2020 and 2030. However, national commitments for the Paris talks still fall short of what’s needed to prevent the average global temperature in 2100 from being any more than 2 degrees Celsius warmer than at the start of this century—the international community’s consensus benchmark for climate impact.

Worse still, the national pledges employ a hodgepodge of accounting methods that include some significant loopholes that ignore important emissions such as leaking methane from U.S. oil and gas production and underreported coal emissions from China. How the promised emissions reductions will be verified post-Paris is “a big debate right now and it makes a massive difference in the numbers,” says Jennifer Morgan, global director for the climate program at the World Resources Institute (WRI), a Washington, D.C.-based non-governmental organization. Continue reading