Micro-Satellite Tracks Carbon Polluters From Space

CLAIRE.PetitSaut.MethaneConcentration

Simulated satellite image of methane plume from French Guyana’s Petit Saut hydroelectric power plant. Image: GHGSat

Attention greenhouse gas emitters: There’s a new eye in the sky that will soon be photographing your carbon footprint and selling the images to any and all. It’s a micro-satellite dubbed “Claire” (clear, bright, and clean in French) by its Montreal-based developer, GHGSat.

This microwave-oven-sized pollution paparazzo rocketed to a 512-kilometer-high orbit in mid-June care of the Indian Space Agency, with a mission to remotely measure the plumes of carbon dioxide and methane wafting up from myriad sources on Earth’s surface. Claire’s targets include power plants, natural gas fracking fields, rice paddies, and much more—just about any emissions source that someone with a checkbook (corporations, regulators, activists) wants tracked, according to GHGSat president Stéphane Germain.

Germain says Claire’s data can improve compliance reporting to regulators and carbon markets, enable tracking of industrial efficiency, and provide competitive intelligence, among other uses. “Our vision is to be the global standard for emissions monitoring across the world. That’s ambitious, but we think it’s attainable,” he says.

Space agencies already monitor emissions from orbit. They have launched a series of satellites such as NASA’s OCO-2 to specifically track atmospheric CO2 and methane, and those missions are delivering an important reality check on national pollution inventories, which are based largely on engineering estimates.

Both satellite and ground-based research has identified vast undercounting of methane emissions by the U.S. EPA, prompting the agency to revise its inventories earlier this year.

However, OCO-2 and other satellites such as Europe’s Tropomi and Japan’sIbuki were primarily designed to generate data for climate models, and thus emphasize a wide field and exquisite greenhouse-gas level precision but with low spatial resolution. Germain says GHGSat is designed for a totally different mission.

“We have deliberately limited the scope of the physical field of view. We know where the emissions are coming from. All we need to do is point at known sites and characterize the plume from the facilities,” says Germain.

Like its predecessors, Claire uses an infrared spectrometer to detect telltale patterns of sunlight absorption that indicate levels of atmospheric CO2 and methane. Unlike its predecessors, which use “push-broom” spectrometers that scan side to side to generate a 2-D spectral database, Claire has an imaging spectrometer that takes a series of 2-D spectral snapshots as the micro-satellite passes overhead.

Telescopic lensing focuses Claire’s spectrometer to take 12 kilometer x 12 kilometer snapshots. With its 0.25 megapixel detector, each pixel thus represents a 25 meter x 25 meter plot of ground—a spatial resolution two orders of magnitude higher resolution than OCO-2.

GHGSat also parted ways with its predecessors on cooling. Cryogenic cooling of spectrometers minimizes background noise for missions such as OCO-2. Claire does without cooling to minimize complexity and weight, helping keep total project cost including launch below C$10 million (US $7.7 million). Signal-to-noise ratio is maintained, says Germain, by combining multiple snapshots and filtering out noise.

img

Claire. Photo: GHGSat Inc.

Further data processing turns Claire’s composite images of CO2 and methane concentrations above a given site into an estimate of the rate at which gases are flowing from their source. GHGSat will do this by factoring in data on wind speed and direction, using the same “inverse modeling” proven by OCO-2 and Tropomi.

Some pre-launch coverage of GHGSat was skeptical of the firm’s ability to deliver. InsideClimate News wrote last month that most scientists it contacted questioned the readiness of both remote sensing technology and inverse modeling to deliver reliable emissions estimates.

Harvard University remote sensing expert Daniel Jacob, a GHGSat collaborator, strikes a more optimistic tone. He told IEEE Spectrum that if Claire’s spectrometer can deliver the +/- 1 to 5 percent precision that GHGSat is predicting, “the ability to detect point sources will be impressive.”

GHGSat expects to complete testing of Claire’s systems this month and to begin making observations for initial customers within a month or two. Up first are hydropower reservoirs in Québec and Manitoba and large tailings ponds associated with oil sands mining in Alberta. Estimating emissions from the latter is currently dangerous, costly, and fraught with uncertainty levels in excess of 50 percent. Ground measurements taken simultaneously at those sites will validate the satellite’s performance.

Plans are already afoot, meanwhile, to launch a second satellite in 12-18 months to assure continuity of observations should Claire malfunction and to expand GHGSat’s customer capacity. (Claire will be able to monitor over 1,000 sites per year.)

More satellites will also enable more frequent tracking of a given site. While Claire orbits Earth every 90 minutes, its route takes it within range of the same site just once every two weeks. That could make data from one or a few satellites hard to interpret for dynamic operations, such as power plants that ramp up and down hourly or daily or natural gas compressor stations and fracking wells that sporadically belch large volumes of methane.

Germain says that, with sufficient demand, they may ultimately launch a fleet large enough to meet even those challenges: “It’s well within the reach of our business case to get to daily measurements, or even to 2 to 3 times per day.”

This post was created for Energywise, IEEE Spectrum’s blog about the future of energy, climate, and the smart grid

Does Electrification Really Cause Economic Growth?

Mjc2OTQ4NQ

Villages brightened from 2001 (L) to 2011 (R). Images: Burlig & Preonas / NOAA

Electrification is associated with a seemingly endless list of social and economic goods. Nations that use more power tend to have increased income levels and educational attainment and lower risk of infant mortality, to name but a few. So I was baffled to stumble across a pair of economic analyses on electrification in India and Kenya, posted last month, that cast serious doubt on what has long assumed to be a causal link between the glow of electricity and rural development.

“It is difficult to find evidence in the data that electrification is dramatically transforming rural India,” concludes Fiona Burlig, a fourth-year UC Berkeley doctoral student in agricultural and resource economics who coauthored the India study. “In the medium term, rural electrification just doesn’t appear to be a silver bullet for development.” Continue reading

The Natural Gas Accounting Gap

Last month the U.S. EPA admitted it was way off in its estimate of how much methane producers leak into the atmosphere in the process of wresting natural gas from the ground and piping it across the continent. It’s a big deal since methane is a far more potent greenhouse gas than carbon dioxide and likely responsible for a substantial fraction of the climate change we’re already experiencing. And it’s been a long time coming. For many years now methane measurements by airplanes and satellites have strongly suggested that methane emissions from the oil and gas patch could be double what EPA figures captured.

Today the online earth observation pub Earthzine has my take on an unusual research project that helped convince EPA — and the industry — to change their tune on methane emissions. Take me to the article…

NASA Launches its First Carbon-Tracking Satellite

Photo: Bill Ingalls/NASA

Photo: Bill Ingalls/NASA

It’s been a rough birthing process for NASA’s Orbiting Carbon Observatory (OCO) satellite program, which promises global tracking of carbon dioxide entering and leaving the atmosphere at ground level. Five years ago the first OCO fell into the Antarctic Ocean and sank, trapped inside the nose cone of a Taurus XL launch vehicle that failed to separate during launch. The angst deepened yesterday when NASA’s Jet Propulsion Laboratory (JPL) scrubbed a first attempt to launch a twin of the lost $280-million satellite, OCO-2, after sensors spotted trouble with the launch pad’s water-flood vibration-damping system less than a minute before ignition.

But this morning OCO’s troubles became history. At 2:56 a.m. PDT a Delta II rocket carrying the OCO-2 satellite roared off the pad at Vandenberg Air Force Base in California. According to JPL, the OCO separated from the Delta II’s second stage 56 minutes later and settled into an initial 690-kilometer-high orbit. If all goes well it will maneuver into a final 705-km orbit over the next month, putting it at the head of an international multi-satellite constellation of Earth-observing satellites known as the A-Train. Continue reading

Sniffing Gas: White House Taps ARPA-E to Boost Methane Detection

Gasbot 2.0. Photo: Victor Hernandez

Gasbot photo: Victor Hernandez

In this month’s issue of IEEE Spectrum we spotlight the methane emissions overlooked by the U.S. EPA’s greenhouse gas inventory, and the satellite-based detector launching next year to map this “missing methane.” Last week the White House acknowledged EPA’s missing methane problem, and laid out a strategy to combat it. While promising to improve EPA’s inventory, including more use of top-down methane measurement, the White House also promised federal investment in ground-based methane sensing to plug leaky natural gas systems thought to be the source of much of the missing methane.

Action can’t come soon enough according to the Intergovernmental Panel on Climate Change (IPCC), which on Monday unveiled its latest report onClimate Change Impacts, Adaptation, and Vulnerability. The IPCC said “widespread and consequential” impacts are already visible and world leaders have only a few years to change course to avoid catastrophic warning. Methane is a major contributor according to the scientific body’s update on the physical basis for climate change, released last fall, which deemed methane to be up to 44 percent more potent as a warming agent than previously recognized. Continue reading

Satellites and Simulations Track Missing Methane

In the April 2014 issue of IEEE Spectrum:

Methane emissions from oil and gas extraction, herding livestock, and other human activities in the United States are likely 25 to 75 percent higher than the U.S. Environmental Protection Agency currently recognizes, according to ameta-analysis of methane emissions research published recently in Science. While experts in remote sensing debate the merits of this and other recent challenges to the EPA’s numbers, definitive answers are already on order via a high-precision Earth observation satellite to be launched next year.

The intensifying methane emissions debate has profound implications for climate and energy policy. Natural gas consumption is rising, and methane’s global warming impact is more than 30 times as much as that of carbon dioxide, molecule for molecule, and second only to carbon dioxide’s in today’s net climate impact …

click to read on

Rendering Greenhouse Gases Visible

Natural gas has no odor, but you can smell a leak thanks to the addition of an odorific mercaptam compound. Do carbon dioxide and other similarly odorless greenhouse gases (GHGs) require some analogous device to make their presence known and thus prompt evasive action? Yes, and for these ubiquitous gases, it will be a visual cue indicating the source and quantity of GHGs Continue reading