Dispelling Carbon Capture’s Scaling Myth

Critics of carbon capture and storage (CCS) often deride the scale of infrastructure required for CSS to make a meaningful dent in global carbon emissions — not just in equipment to capture emissions at power plants (and other ‘point’ sources of CO2) but also in pipelines to move the captured CO2 to storage sites. But an overlooked recent study by the Richland, WA-based Pacific Northwest National Laboratory (PNNL) makes a convincing case that, at least where pipelines are concerned, the scale of CO2 infrastructure required is well within the realm of current industrial activities.

First to the critics, who like to compare (unfavorably) CCS infrastructure to the heft of the oil industry. Take Joseph Romm, who writes in his Climate Progress blog that, “We need to put in place a dozen or so clean energy “stabilization wedges” by mid-century to avoid catastrophic climate outcomes … For CCS to be even one of those would require a flow of CO2 into the ground equal to the current flow of oil out of the ground. That would require, by itself, re-creating the equivalent of the planet’s entire oil delivery infrastructure, no mean feat.” [Emphasis by Romm]

The PNNL study determines the feat is feasible not by taking issue with  estimates such as Romm’s, but rather by projecting a realistic implementation path for CCS technology. The research, presented by PNNL senior scientist Jim Dooley at November’s 9th International Conference on Greenhouse Gas Technologies, first projects how rapidly CCS could grow in the U.S. under agressive climate policies. Then it compares the pace of pipeline construction implied with the historic evolution of natural gas pipelines.

PNNL’s conclusion: “The sheer scale of the required infrastructure should not be seen as representing a significant impediment to US deployment of CCS technologies.”

PNNL Comparison of CCS and natural gas infrastructure growthBetween 11,000 and 23,000 miles of dedicated CO2 pipeline would need to be layed in the U.S. before 2050, according to PNNL’s estimates, in addition to the 3,900 miles already in place (which carry mostly naturally-occuring CO2 used to stimulate production from aging oil wells). The attached graph from Dooley’s presentation breaks the projected CO2 pipeline mileage down by decade of installation (see red and blue bars), and shows just how puny it is relative to the U.S. natural gas network (yellow bars).

Note that MIT’s 2007 Future of Coal report also compared CCS infrastructure favorably to natural gas pipelines. The MIT report estimated that capturing all of the roughly 1.5 billion tons per year of CO2 generated by coal- burning power plants in the U.S. would generate a CO2 flow with just one-third the volume of the natural gas flowing in the U.S. gas pipeline system.

That scale is certainly immense. But so is the challenge posed by climate change.

add to del.icio.us : Add to Blinkslist : add to furl : Digg it : add to ma.gnolia : Stumble It! : add to simpy : seed the vine : : : TailRank

This post was created for the Technology Review guest blog: Insights, opinions and analysis of the latest in emerging technologies


One thought on “Dispelling Carbon Capture’s Scaling Myth

  1. The problem with most CCS concepts is that they fail to appreciate the scale of capture needed to have a significant impact on global climate change and/or have excessive energy requirements. I would like to see this concept described in terms of energy and mass balances and the number of facilities required at scale.
    I have developed a concept that solves these problems more efficiently than any other I have seen. I am looking for engineers and environmental project managers for a startup venture developing this technology. Please see the group: Rubian Systems on Linked In for more information.

Offer feedback

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s