Understanding the IPCC’s Devotion to Carbon Capture

P1130803-3I’ve delivered several dispatches on carbon capture and storage (CCS) recently, including a pictorial ‘how-it-works’ feature on the world’s first commercial CCS power plant posted this week by Technology Review and typeset for their January print issue. Two aspects of CCS technology and its potential applications bear further elaboration than was possible in that short text.

Most critical is a longer-term view on how capturing carbon dioxide pollution from power plants (and other industrial CO2 sources) can serve to reduce atmospheric carbon dioxide concentrations. As my article on the Boundary Dam plant in Saskatchewan states, projections by the Intergovernmental Panel on Climate Change suggest that all coal-fired power plants must capture their CO2 by 2050 to keep warming below 2 °C.

But the IPCC is looking for CCS to do more than just zero out emission from fossil fuel-fired power plants. Even with that, and with renewable energy pushed to the max, the IPCC expects atmospheric carbon levels to remain dangerously high in mid-Century. That’s not hard to grasp in light of the fact that anthropogenic CO2 emissions and atmospheric CO2 levels are still rising, and prospects for a global agreement to stop that trend remain tenuous.

CCS’s second act, in the IPCC’s vision, is to collect carbon from power plants burning wood or other biomass. Since the carbon in those fuels is mostly drawn from the atmosphere, capturing and storing it underground is a means of sucking anthropogenic carbon out of the atmosphere. According to the IPCC equipping biomass-fuelled power plants with CCS technology is the only power-generating option with negative carbon emissions.

While it has yet to be demonstrated at a power plant, global ag commodities firm ADM started up CCS equipment at an ethanol plant in Illinois that is capturing bio-carbon at about the same rate that the Boundary Dam plant captures fossil carbon.

The carbon capture process itself also bears further elaboration. The technology employed at Boundary Dam uses a chemical absorption process to separate carbon dioxide from combustion flue gases. Such post-combustion capture equipment is an adaption of the scrubbers added to many coal-fired power plants to remove sulphur from their effluent (thus reducing acid rain).

My good friend Pete Offenhartz smartly asked what became of an alternate pre-combustion carbon capture approach that I have covered extensively in the past in which coal is gasified and carbon is removed from that gas stream prior to combustion. Pre-combustion CCS has lost ground recently for two reasons: One is that, unlike post-combustion CCS that can be retrofit to an existing power plant, as occurred at Boundary Dam, pre-combustion technology is only applicable to new plants. And few new coal-fired power plants are being built in the U.S. (thanks to cheap natural gas from fracking) or in Europe (where rising solar and wind generation is slashing wholesale power prices).

Another factor is the weak example set by pioneering gasification projects. For example, little has been heard from a prototype plant erected in Tianjin, China, although it recently appeared in an intriguing footnote to the carbon emissions deal signed by Presidents Obama and Xi last month. As I wrote for Spectrum magazine’s Energywise Blog, the plant could become the first testbed for integrating CCS and water production.

Plenty, meanwhile, has been heard from a pioneering gasification power plant in Mississippi, and the news is not inspiring. That cost of that plant, five times bigger than the CCS-equipped unit at Boundary Dam, has escalated from $2.4 billion to over $6 billion. And startup expected this year has been pushed back to March 2016 at the earliest.

Causes of the delays and cost overruns, according to MIT’s CCS Project Database,  include miscalculation of pipe thickness, length, quantity and metallurgy which then required reinforcement of the plant’s support structures.

Can China Turn Carbon Capture into a Water Feature?

LLNL process image

Water recovery concept for CCS at GreenGen. Source: LLNL

In an intriguing footnote to their historic climate deal this month, Chinese President Xi Jinping and U.S. President Barack Obama called for demonstration of a hitherto obscure tweak to carbon capture and storage (CCS) technology that could simultaneously increase its carbon storage capacity and reduce its thirst for water. Such an upgrade to CCS holds obvious attraction for China, which is the world’s top carbon polluter and also faces severe water deficits, especially in the coal-rich north and west.

As the Union of Concerned Scientists puts it in its The Equation blog, “Cracking this nut … could be a huge issue for China.” Continue reading

Obama and Xi Breathe New Qi into Global Climate Talks

Context is everything in understanding the U.S.-China climate deal struck in Beijing by U.S. President Barack Obama and Chinese President Xi Jinping last week. The deal’s ambitions may fall short of what climate scientists called for in the latest entreaty from the Intergovernmental Panel on Climate Change, but its realpolitik is important.

Obama and Xi’s accord sets a new target for reductions in U.S. greenhouse gas emissions: 26-28 percent below 2005 levels by 2025. And for the first time sets a deadline for China’s rising GHGs to peak: 2030. This is potentially strong medicine for cooperation, when seen in the context of recent disappointments for global climate policy. Continue reading

NASA Launches its First Carbon-Tracking Satellite

Photo: Bill Ingalls/NASA

Photo: Bill Ingalls/NASA

It’s been a rough birthing process for NASA’s Orbiting Carbon Observatory (OCO) satellite program, which promises global tracking of carbon dioxide entering and leaving the atmosphere at ground level. Five years ago the first OCO fell into the Antarctic Ocean and sank, trapped inside the nose cone of a Taurus XL launch vehicle that failed to separate during launch. The angst deepened yesterday when NASA’s Jet Propulsion Laboratory (JPL) scrubbed a first attempt to launch a twin of the lost $280-million satellite, OCO-2, after sensors spotted trouble with the launch pad’s water-flood vibration-damping system less than a minute before ignition.

But this morning OCO’s troubles became history. At 2:56 a.m. PDT a Delta II rocket carrying the OCO-2 satellite roared off the pad at Vandenberg Air Force Base in California. According to JPL, the OCO separated from the Delta II’s second stage 56 minutes later and settled into an initial 690-kilometer-high orbit. If all goes well it will maneuver into a final 705-km orbit over the next month, putting it at the head of an international multi-satellite constellation of Earth-observing satellites known as the A-Train. Continue reading

Sniffing Gas: White House Taps ARPA-E to Boost Methane Detection

Gasbot 2.0. Photo: Victor Hernandez

Gasbot photo: Victor Hernandez

In this month’s issue of IEEE Spectrum we spotlight the methane emissions overlooked by the U.S. EPA’s greenhouse gas inventory, and the satellite-based detector launching next year to map this “missing methane.” Last week the White House acknowledged EPA’s missing methane problem, and laid out a strategy to combat it. While promising to improve EPA’s inventory, including more use of top-down methane measurement, the White House also promised federal investment in ground-based methane sensing to plug leaky natural gas systems thought to be the source of much of the missing methane.

Action can’t come soon enough according to the Intergovernmental Panel on Climate Change (IPCC), which on Monday unveiled its latest report onClimate Change Impacts, Adaptation, and Vulnerability. The IPCC said “widespread and consequential” impacts are already visible and world leaders have only a few years to change course to avoid catastrophic warning. Methane is a major contributor according to the scientific body’s update on the physical basis for climate change, released last fall, which deemed methane to be up to 44 percent more potent as a warming agent than previously recognized. Continue reading

Satellites and Simulations Track Missing Methane

In the April 2014 issue of IEEE Spectrum:

Methane emissions from oil and gas extraction, herding livestock, and other human activities in the United States are likely 25 to 75 percent higher than the U.S. Environmental Protection Agency currently recognizes, according to ameta-analysis of methane emissions research published recently in Science. While experts in remote sensing debate the merits of this and other recent challenges to the EPA’s numbers, definitive answers are already on order via a high-precision Earth observation satellite to be launched next year.

The intensifying methane emissions debate has profound implications for climate and energy policy. Natural gas consumption is rising, and methane’s global warming impact is more than 30 times as much as that of carbon dioxide, molecule for molecule, and second only to carbon dioxide’s in today’s net climate impact …

click to read on

Counting the Sins of Chinese SynGas

Heavy water use, threats of tainted groundwater, and artificial earthquakes are but a sampling of the environmental side effects that have tarnished North America’s recent boom in natural gas production via hydraulic fracturing or fracking. No surprise then that in European countries such as the U.K. that are looking to frack for cheap domestic gas, the environmental protesters often arrive ahead of the drill rigs.

But countries seeking fresh gas supplies could do far worse than fracking. So say Duke University researchers who, in today’s issue of the research journal Nature Climate Change, shine a jaundiced spotlight on China’s plans to synthesize natural gas from coal. Nine synthetic gas plants recently approved by Beijing would increase the annual demand for water in the country’s arid northern regions by over 180 million metric tons, the Duke team concluded, while emissions of carbon dioxide would entirely wipe out the climate-cooling impact of China’s massive wind and solar power installations. Continue reading