Sniffing Gas: White House Taps ARPA-E to Boost Methane Detection

Gasbot 2.0. Photo: Victor Hernandez

Gasbot photo: Victor Hernandez

In this month’s issue of IEEE Spectrum we spotlight the methane emissions overlooked by the U.S. EPA’s greenhouse gas inventory, and the satellite-based detector launching next year to map this “missing methane.” Last week the White House acknowledged EPA’s missing methane problem, and laid out a strategy to combat it. While promising to improve EPA’s inventory, including more use of top-down methane measurement, the White House also promised federal investment in ground-based methane sensing to plug leaky natural gas systems thought to be the source of much of the missing methane.

Action can’t come soon enough according to the Intergovernmental Panel on Climate Change (IPCC), which on Monday unveiled its latest report onClimate Change Impacts, Adaptation, and Vulnerability. The IPCC said “widespread and consequential” impacts are already visible and world leaders have only a few years to change course to avoid catastrophic warning. Methane is a major contributor according to the scientific body’s update on the physical basis for climate change, released last fall, which deemed methane to be up to 44 percent more potent as a warming agent than previously recognized.

The White House says that the U.S. Department of Energy’s ARPA-E high-risk energy R&D fund will contribute by seeking to improve natural gas sensors, which are presently sensitive or cheap but not both. ARPA-E is preparing a new funding program that the White House says will “deliver an order-of-magnitude reduction on the cost of methane sensing, thus facilitating much wider deployment throughout all segments of natural gas systems.”

One contestant for funding could be robotic systems such as the Swedish-developed Gasbot profiled by Spectrum last year. Gasbot, a project from Sweden’s Örebro University, uses a mobile robot from Kitchener, Ont.-basedClearpath Robotics equipped with a laser-based remote gas sensor to map methane concentrations across a potential leak site. Orebro doctoral student Victor Hernandez says the Gasbot team has implemented improvements sinceSpectrum‘s coverage, including the addition of an anemometer to help determine where detected emissions are coming from.

Using a robot might reduce labor costs and accelerate the process of mapping a site, such as a natural gas plant or a landfill, and Hernandez says a market survey conducted last year has confirmed commercial interest in Gasbot. But Örebro’s package doesn’t come cheap in its present incarnation. The gas sensor alone costs about €10 000 (US $13 760), he says, and the Clearpath A-200 robot is another $12 000 or so.

Another contestant could be the laser science research group at Rice University, in Houston, which has recently demonstrated two novel strategies for building compact, sensitive and potentially low-cost methane detectors. The best developed relies on recently miniaturized mid-infraredquantum cascade lasers and cheap piezo-electric devices to detect the laser-excited heating of traces of methane gas—traces as thin as 13 parts per billion (ppb) according to group leader Frank Tittel, a professor of electrical engineering. His newer system uses advanced optics to more than double the methane sensitivity.

Tittel’s group has already proven its devices at a Houston landfill through a NASA program designed to calibrate space-based measurements of methane and other pollutants. He projects that the piezo-electrically tuned sensor could be scaled down and mass produced to deliver a $1000 system the size of a smart phone. The key, says Tittel, is mass production of the lasers, which currently cost $12 000.

Tittel says his group has teamed up with Newton, N.J.-based Thorlabs, which makes the required quantum cascade lasers as well as the electronics, mechanical stabilizers, and optics to build an integrated product.

Thorlabs appears to be keen. The company presented at an ARPA-E methane technology workshop last year, and declared its intention to “grow the [mid-infrared laser] market by reducing component costs.”

Message to missing methane: You may soon have nowhere to hide.

This post was created for Energywise, IEEE Spectrum’s blog on green power, cars and climate

Satellites and Simulations Track Missing Methane

In the April 2014 issue of IEEE Spectrum:

Methane emissions from oil and gas extraction, herding livestock, and other human activities in the United States are likely 25 to 75 percent higher than the U.S. Environmental Protection Agency currently recognizes, according to ameta-analysis of methane emissions research published recently in Science. While experts in remote sensing debate the merits of this and other recent challenges to the EPA’s numbers, definitive answers are already on order via a high-precision Earth observation satellite to be launched next year.

The intensifying methane emissions debate has profound implications for climate and energy policy. Natural gas consumption is rising, and methane’s global warming impact is more than 30 times as much as that of carbon dioxide, molecule for molecule, and second only to carbon dioxide’s in today’s net climate impact …

click to read on

Rendering Greenhouse Gases Visible

Natural gas has no odor, but you can smell a leak thanks to the addition of an odorific mercaptam compound. Do carbon dioxide and other similarly odorless greenhouse gases (GHGs) require some analogous device to make their presence known and thus prompt evasive action? Yes, and for these ubiquitous gases, it will be a visual cue indicating the source and quantity of GHGs Continue reading

Applying ‘Trust, but verify’ to Climate Change Policy

Last year Swiss researchers demonstrated that European countries release more of the potent greenhouse gas trifluoromethane than they report. It was just the latest in a growing number of case studies showing that polluters and governments might be under-estimating their climate change impact, but it served to highlight the science and technology that can reveal such cheating Continue reading

A Mighty Extreme Wind for Offshore Turbines

In January we reported that winds across the Northern continents were losing some of their punch, and that climate change threatened to weaken them further — altogether bad news for wind power. In stark contrast, Australian researchers report today in the journal Science that gusts are accelerating over Earth’s oceans.

Unfortunately the trend offers offshore wind power a mixed bag: stronger but also more dangerous winds. “Mean wind conditions over the oceans have only marginally increased over the last 20 years. It is the extreme conditions where there has been a larger increase,” says Ian Young, vice chancellor at the Australian National University in Canberra and principal author of today’s report. Continue reading

Winged Creatures Should Fear CO2, Not Wind Turbines

Benjamin Sovacool agrees that wind turbines kill birds and bats, but this University of Singapore public policy professor makes a convincing case that this fact desperately needs context. Reviewing avian mortality from power generation in the June issue of Energy Policy, Sovacool shows that — gigawatt-hour for gigawatt-hour — it is fossil-fired power by a longshot that will ground winged creatures.

Sovacool’s analysis estimates avian deaths throughout the fuel cycle for coal, oil and natural-gas fired power generation:

  • Coal mining = 0.02 deaths per gigawatt-hour (GWh). For example, habitat destruction by mountaintop removal coal mining in Appalachia has killed approximately 191,722 Cerulean Warblers.
  • Plant operations = 0.07 bird deaths/GWh. Electrocution at one well-observed power plant in Spain killed 467 birds over two years.
  • Acid rain = 0.05 deaths/GWh. Cornell’s Laboratory of Ornithology estimated in 2002 that acid rain reduced the U.S. wood thrush population by 2–5%.
  • Mercury emissions = 0.06 deaths/GWh. Impacts include hampered reproduction and survival, observed in everything from albatross and woodstorks to bald eagles. Continue reading