Understanding the IPCC’s Devotion to Carbon Capture

P1130803-3I’ve delivered several dispatches on carbon capture and storage (CCS) recently, including a pictorial ‘how-it-works’ feature on the world’s first commercial CCS power plant posted this week by Technology Review and typeset for their January print issue. Two aspects of CCS technology and its potential applications bear further elaboration than was possible in that short text.

Most critical is a longer-term view on how capturing carbon dioxide pollution from power plants (and other industrial CO2 sources) can serve to reduce atmospheric carbon dioxide concentrations. As my article on the Boundary Dam plant in Saskatchewan states, projections by the Intergovernmental Panel on Climate Change suggest that all coal-fired power plants must capture their CO2 by 2050 to keep warming below 2 °C.

But the IPCC is looking for CCS to do more than just zero out emission from fossil fuel-fired power plants. Even with that, and with renewable energy pushed to the max, the IPCC expects atmospheric carbon levels to remain dangerously high in mid-Century. That’s not hard to grasp in light of the fact that anthropogenic CO2 emissions and atmospheric CO2 levels are still rising, and prospects for a global agreement to stop that trend remain tenuous.

CCS’s second act, in the IPCC’s vision, is to collect carbon from power plants burning wood or other biomass. Since the carbon in those fuels is mostly drawn from the atmosphere, capturing and storing it underground is a means of sucking anthropogenic carbon out of the atmosphere. According to the IPCC equipping biomass-fuelled power plants with CCS technology is the only power-generating option with negative carbon emissions.

While it has yet to be demonstrated at a power plant, global ag commodities firm ADM started up CCS equipment at an ethanol plant in Illinois that is capturing bio-carbon at about the same rate that the Boundary Dam plant captures fossil carbon.

The carbon capture process itself also bears further elaboration. The technology employed at Boundary Dam uses a chemical absorption process to separate carbon dioxide from combustion flue gases. Such post-combustion capture equipment is an adaption of the scrubbers added to many coal-fired power plants to remove sulphur from their effluent (thus reducing acid rain).

My good friend Pete Offenhartz smartly asked what became of an alternate pre-combustion carbon capture approach that I have covered extensively in the past in which coal is gasified and carbon is removed from that gas stream prior to combustion. Pre-combustion CCS has lost ground recently for two reasons: One is that, unlike post-combustion CCS that can be retrofit to an existing power plant, as occurred at Boundary Dam, pre-combustion technology is only applicable to new plants. And few new coal-fired power plants are being built in the U.S. (thanks to cheap natural gas from fracking) or in Europe (where rising solar and wind generation is slashing wholesale power prices).

Another factor is the weak example set by pioneering gasification projects. For example, little has been heard from a prototype plant erected in Tianjin, China, although it recently appeared in an intriguing footnote to the carbon emissions deal signed by Presidents Obama and Xi last month. As I wrote for Spectrum magazine’s Energywise Blog, the plant could become the first testbed for integrating CCS and water production.

Plenty, meanwhile, has been heard from a pioneering gasification power plant in Mississippi, and the news is not inspiring. That cost of that plant, five times bigger than the CCS-equipped unit at Boundary Dam, has escalated from $2.4 billion to over $6 billion. And startup expected this year has been pushed back to March 2016 at the earliest.

Causes of the delays and cost overruns, according to MIT’s CCS Project Database,  include miscalculation of pipe thickness, length, quantity and metallurgy which then required reinforcement of the plant’s support structures.

Turning E-Waste into LIght

Bangalore street vendor with battery-powered light SOURCE IBM Research India

Bangalore street vendor with battery-powered light. Source: IBM Research India

Bangalore-based IBM Research India has a bright idea for keeping discarded lithium laptop batteries out of landfills: repurposing their cells as energy supplies for the powerless. The idea, presented at this weekend’s fifth annual Symposium on Computing for Development (DEV 2014) in San Jose, has passed a small proof-of-principle test run with Bangalore’s working poor.

The IBM researchers used disused lithium batteries to create a new device they dubbed the UrJar—a multilingual monicker uniting the Hindi word urjafor energy with jar. Hardware R&D firm Radio Studio, India, built the units.  The first phase was tear-down. Radio Studio disassembled laptop batteries to isolate those cells that could still hold several hours’ worth of charge—over 60 percent of cells on average, according to their sampling.
urjar_1Cells that passed quality control were repackaged in a housing with basic electronics [image left], starting with a charging circuit to limit the rate and level of charge on the lithium cells and thus minimize fire risk. Buck converters and a boost circuit feed power jacks for a variety of DC devices including cell phones, LED lights and small fans.

Testing by one non-electrified Bangalore resident and four street vendors led to favorable feedback after use of an UrJar for between one week and three months. One street vendor, who previously relied on a battery-powered compact fluorescent light at night, reported that he could keep his shop open two hours longer by using the UrJar powering an LED light.

Mohit Jain, a member of the IBM group, told Technology Review that “the main request was for rat-resistant wires and brighter bulbs.”

At a produciton volume of 100 they figure they can turn out UrJars, including a 3 W LED light and a mobile charger, for 600 rupee ($9.70). That is one half to one-third the cost of the rechargeable portable lighting devices marketed in Bangalore, most of which use shorter-lived lead acid batteries. Participants in the IBM study reported they would pay 1,000 rupees to own an UrJar.

That suggests there could be plenty of demand. According to the IBM paper there are more than 400 million people in India without power, including 45 percent of rural households. They envision rural residents charging UrJars at centralized solar-power stations.

There is certainly no shortage of tossed batteries to fuel this vision. The IBM paper estimates that 142,000 computers are discarded daily in the U.S. alone, while one large multinational’s India operations alone discarded more than 10 metric tons of laptop batteries last year.

BBC highlighted India’s growing indigenous e-waste problem in reporting on the UrJar last week, citing one estimate that its IT sector generates 32 metric tons of e-waste per day. That’s a lot of UrJars.

This post was created for Energywise, IEEE Spectrum’s blog on green power, cars and climate

Can China Turn Carbon Capture into a Water Feature?

LLNL process image

Water recovery concept for CCS at GreenGen. Source: LLNL

In an intriguing footnote to their historic climate deal this month, Chinese President Xi Jinping and U.S. President Barack Obama called for demonstration of a hitherto obscure tweak to carbon capture and storage (CCS) technology that could simultaneously increase its carbon storage capacity and reduce its thirst for water. Such an upgrade to CCS holds obvious attraction for China, which is the world’s top carbon polluter and also faces severe water deficits, especially in the coal-rich north and west.

As the Union of Concerned Scientists puts it in its The Equation blog, “Cracking this nut … could be a huge issue for China.” Continue reading

Obama and Xi Breathe New Qi into Global Climate Talks

Context is everything in understanding the U.S.-China climate deal struck in Beijing by U.S. President Barack Obama and Chinese President Xi Jinping last week. The deal’s ambitions may fall short of what climate scientists called for in the latest entreaty from the Intergovernmental Panel on Climate Change, but its realpolitik is important.

Obama and Xi’s accord sets a new target for reductions in U.S. greenhouse gas emissions: 26-28 percent below 2005 levels by 2025. And for the first time sets a deadline for China’s rising GHGs to peak: 2030. This is potentially strong medicine for cooperation, when seen in the context of recent disappointments for global climate policy. Continue reading

EU Climate Summit Commits to 2030 Carbon Cuts

European leaders wrapped up a two-day climate summit in Brussels last week with a deal to cut the European Union’s total greenhouse gas emissions to 40 percent below 1990 levels. This would continue a downward trend – the EU is already on track to meet a 20 percent reduction from 1990 levels by 2020 – but the agreement is weak relative to Europe’s prior ambitions to confront climate change.

Investors in green tech pushed aggressively for the deal, seeking a longterm signal that the European market will continue to reward advances in energy efficiency and low-carbon energy production. The deal is also a shot in the arm for the Paris global climate talks, scheduled for December 2015, which will seek to achieve the decisive binding global targets for greenhouse gas reductions that failed to emerge from the 2009 Cophenhagen climate talks.

What the deal lacks is specificity and ambition regarding the mechanisms by which European countries are to achieve the carbon reduction. “Key aspects of the deal that will form a bargaining position for global climate talks in Paris next year were left vague or voluntary,” reported The Guardian. Continue reading

Internet-Exposed Energy Control Systems Abound

Two-and-a-half years ago researchers at Chicago-based cyber security firm Infracritical set out to measure how many industrial control systems are openly exposed to the Internet. Their disquieting findings are up for discussion today at the 2014 ICS Cyber Security Conference in Atlanta.

Infracritical remotely identified over 2.2 million unique IP addresses linked to industrial control systems at energy-related sites including electrical substations, wind farms, and water purification plants. And they were still logging an average of 2,000-3,000 new addresses per day when they closed the count in January 2014.

“We never reached bottom,” says Infracritical cofounder Bob Radvanovsky, an expert in securing supervisory control and data acquisition (SCADA) systems. Continue reading

Nuclear Shutdowns Put Belgians and Britons on Blackout Alert

Doel nuclear power plant by Lennart Tange

Doel nuclear power plant. Credit: Lennart Tange

A bad year for nuclear power producers has Belgians and Britons shivering more vigorously as summer heat fades into fall. Multiple reactor shutdowns in both countries have heightened concern about the security of power supplies when demand spikes this winter.

In Belgium, rolling blackouts are already part of this winter’s forecast because three of the country’s largest reactors — reactors that normally provide one-quarter of Belgian electricity — are shut down. Continue reading